


Cryogenic & Fire Protection

ZALTEX, A CSP & PFP PANEL SOLUTION

Zaltex composite panels offer a new solution for Cryogenic Spillage Protection and an alternative to epoxy coatings when it comes to protect specific areas (steel plating, grating...) on LNG modules for instance. It also allows a quick and easy installation, inspection and maintenance under any weather conditions. We develop a specific design for each application to match customer specifications. Exceptional insulation/mechanical resistance/weight ratio.

Design example for two hours CSP resistance with low thickness (21mm) and density (18 kg/m³)

TECHNICAL PROPERTIES

	ı					
PROPERTIES	STANDARD	3-LAYERS	6 MONTH SEA WATER			
Density [kg/m3]	ISO 845	500		Before	After	
Thickness [mm]*	ISO 845	3+15+3		ageing	ageing	
Thermal conductivity [W/(m.K)]	ASTM C518	0.06	Flexural Modulus [MPa]	2700	3000	
Flexural modulus [MPa]	23°C / -170°C	2700 / 5000	Stress at break [MPa]	29	31	
Stress at break [MPa]	23°C / -170°C	29 / 30				
Temperature after 1 hr [°C]	ISO 20088-1	-20				

-45

BENEFITS

Temperature after 2 hr [°C]

ISO 20088-1

Zaltex has been approved by TotalEnergies and by EPCs

05/2022 - Photos.: Hutchinson

^{*} Available in different thickness (3 to 30 mm) and densities (100 to 1000 $kg/m^3)$